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Abstract. Whilst tight-binding bandstructure calculations are very successful in describing the
Fermi-surface configuration in many quasi-two-dimensional organic molecular metals, the detailed
topology of the predicted Fermi surface often differs from that measured in experiments. This is
very significant when, for example, the formation of a density-wave state depends critically on
details of the nesting of Fermi-surface sheets. These differences between theory and experiment
probably result from the limited accuracy to which theπ -orbitals of the component molecules
(which give rise to the transfer integrals of the tight-binding bandstructure) are known. In order
to surmount this problem, we have derived a method whereby the transfer integrals within a
tight-binding bandstructure model are adjusted until the detailed Fermi-surface topology is in
good agreement with a wide variety of experimental data. The method is applied to the charge-
transfer saltα-(BEDT-TTF)2KHg(SCN)4, the Fermi surface of which has been the source of much
speculation in recent years. The Fermi surface obtained differs in detail from previous bandstructure
calculation findings. In particular, the quasi-one-dimensional component of the Fermi surface is
more strongly warped. This implies that upon nesting of these sheets, significant parts of the
quasi-one-dimensional sheets remain, leading to a complicated Fermi-surface topology within the
low-temperature, low-magnetic-field phase. In contrast to previous models of this phase, the model
for the reconstructed Fermi surface in this work can explain virtually all of the current experimental
observations in a consistent manner.

1. Introduction

The Fermi surfaces of quasi-two-dimensional organic molecular metals of the form
α-(BEDT-TTF)2MHg(SCN)4 (where M= K, Tl or Rb) have been the subject of extensive
experimental studies as a function of temperature and magnetic field [1]. At high temperatures
and high magnetic fields, the Fermi-surface topology appears to be in broad agreement
with calculations of the bandstructure made using the tight binding method [2]. Quantum
oscillations of frequencyFα ≈ 670 T originate from a weakly warped quasi-two-dimensional
cylinder of holes (theα-pocket), with the axis of this cylinder running parallel to the reciprocal-
lattice vectorkb. A second section of the Fermi surface consists of a pair quasi-one-dimensional
electron sheets. At temperatures belowTp ∼ 8 K (M = K, Tl) or 10 K (M = Rb) and at
magnetic fields below the ‘kink’ transition field atBk (Bk ≈ 23 T (M= K), ≈25 T (M= Tl),
or≈ 32 T (M= Rb)) [3,4], the Fermi surface takes on a modified form [3], generally thought
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to result from reconstruction through nesting of the quasi-one-dimensional sheets [5]. This is
evidenced by the appearance of new quantum oscillation frequencies and a pronounced change
in the behaviour of the angle-dependent magnetoresistance oscillations.

The nature of the low-temperature, low-field (LTLF) ground state is the subject of
continuing debate. At fields far belowBk, the existence of an anisotropic magnetic sus-
ceptibility [6] and intrinsic magnetic moments [7] (revealed by muon-spin-rotation exp-
eriments) is suggestive of a spin-density-wave instability. On the other hand, the nearly
isotropic nature ofBk andTp with respect to the orientation ofB appears to be suggestive of
a Pauli-limiting mechanism [8,9], which is a property more in common with charge-density-
wave systems.

In this paper, we will not consider the details of the mechanism responsible for the LTLF
states of these salts, but only the topology of the Fermi surface and its modification due to a
translational nesting vectorQ. We shall concentrate on treating the M= K salt in detail, as the
greatest amount of quantitative information is available for this compound. However, similar
conclusions are expected to apply to the M= Tl and Rb salts and we shall make reference to
relevant results for these materials (especially the M= Tl salt, which appears very similar to
the M= K salt in many respects).

Two models have previously been proposed for the Fermi-surface topologies of the LTLF
ground states of theα-(BEDT-TTF)2MHg(SCN)4 (M = K, Tl or Rb) salts [5, 10]. A
common feature of these models is that the quasi-one-dimensional sheets are assumed to
nest perfectly, therefore becoming dielectric. According to the model of Kartsovniket al [5]
(originally developed to explain Shubnikov–de Haas measurements made on the M= Tl salt),
theQ-vector causes theα-pockets to overlap in one direction giving rise to a new quasi-
one-dimensional sheet, which is then consistent with angle-dependent magnetoresistance
oscillation measurements within the LTLF state. The small lens-shaped pocket created by
the intersection of theα-pockets is then proposed to account for a low frequency of∼200 T
observed in Shubnikov–de Haas oscillation measurements (or∼180 T for the M= K salt) [11];
following common usage, we shall refer to this as theλ-frequencyFλ [11]. Another frequency
Fν ∼ 860 T (or 856 T for the M= K salt) [11] is proposed to correspond to the combination
Fα + Fλ, which is thought to occur as a result of magnetic breakdown [5]. More recent
experimental investigations, however, have shown that while theν-frequency is a pronounced
feature in Shubnikov–de Haas measurements, it has an unusual temperature dependence and
is completely absent from de Haas–van Alphen measurements [11]. The latter evidence
suggests that theν-frequency originates from quantum interference [11] rather than Landau
quantum oscillatory effects. This observation, together with the observation of yet another
frequencyFµ ≈ 775 T in both Shubnikov–de Haas and de Haas–van Alphen experiments, is
incompatible with the reconstructed Fermi surface proposed by Kartsovniket al [5]. More
numerous Shubnikov–de Haas and de Haas–van Alphen frequencies are anticipated by the
model of Uji et al [10], originally proposed to explain Shubnikov–de Haas measurements
made on the M= Tl salt. This model is inadequate, however, because it is unable to account
for the observation of quasi-one-dimensional sheets via angle-dependent magnetoresistance
oscillations within the LTLF state [5,12–17].

A likely reason for the failures of both of the above models to account for all of the
experimental data is that they are based on the original unreconstructed Fermi surface calculated
by Mori et al [2]. It is becoming increasingly apparent that while the calculation of Moriet al
successfully predicts the essential elements (quasi-one-dimensional sheets and anα-pocket)
of the Fermi surface, it is insufficient when we need to consider more detailed features of
the topology [18]. Such details may have little influence on the behaviour of the salts within
the high-magnetic-field, high-temperature phase, but can have profound consequences for the
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degree of nesting and the topology of the Fermi surface within the LTLF phase. To emphasize
this point, the M= NH4 salt serves as a useful example; it is expected to have nearly the
same Fermi surface as the M= K and Tl salts, yet does not revert to a spin-density-wave or
charge-density-wave phase at low temperatures [19]. Instead it is found to be a superconductor
with a critical temperature ofTc ∼ 1 K.

Further deficiencies in the accuracy of the calculated Fermi surface become apparent
when we consider the precise area and orientation of theα-pocket. The original Fermi-surface
calculation for the M= K salt predicts this to occupy∼19% of the Brillouin zone [2],
whereas quantum oscillation studies have shown this to be∼15.7% [1,3–5,10,11,18]. Angle-
dependent magnetoresistance oscillation studies have also shown that this pocket is more
elliptical than originally calculated [13–16], and that its major axis is tilted at an angle with
respect to the reciprocal-lattice vectorka [14,16]. Bandstructure calculations have since been
able to reproduce some aspects of theα-pocket topology more closely [20–23], but are still
partially inaccurate in that they either wrongly estimate its area or underestimate the angle of
tilt. While there have been extensive measurements made of theα-pocket, there have been no
direct measurements made of the quasi-one-dimensional sheets of the unreconstructed Fermi
surface, making comparisons between calculation and experiment more difficult in this case. A
quantitative estimate of the gap between theα-pocket and the quasi-one-dimensional sheets has
nevertheless been made through de Haas–van Alphen studies of the large magnetic breakdown
frequencyFβ [18]. The existence of this orbit, with an area ink-space equal to that of the
Brillouin zone, requires electrons to tunnel between the quasi-one-dimensional and quasi-two-
dimensional Fermi-surface sections. The size of the gap, determined by these measurements,
is much smaller than that predicted by any of the bandstructure calculations [2,20–23]. Thus
there is mounting evidence to suggest that the current techniques used to calculate the band-
structures of charge-transfer salts may not be capable of calculating their Fermi surfaces to the
accuracy we desire. While the tight-binding method is probably the most reliable means for
calculating their Fermi surfaces, this method is limited by the accuracy to which theπ -orbitals
of the BEDT-TTF molecules can be modelled. This is important because the transfer integrals
are estimated from the degree of molecular overlap between theπ -orbitals of neighbouring
BEDT-TTF molecules.

Rather than calculating the transfer integrals from the molecular overlap determined
theoretically, in this paper we adopt an alternative approach by which effective ‘transfer
integrals’ti are fitted to the experimentally determined Fermi surface. In applying this method
toα-(BEDT-TTF)2KHg(SCN)4, we assume only that the tight-binding Hamiltonian adequately
describes charge transfer in this compound, and then adjust theti until a Fermi surface
closely reproducing that determined experimentally is obtained. As a result of applying this
procedure toα-(BEDT-TTF)2KHg(SCN)4, we find that the quasi-one-dimensional sheets of the
calculated unreconstructed Fermi surface are more strongly warped than previously proposed,
in agreement with the recent suggestion of Honoldet al [18]. Consequently, there exists only
one commensurate translational vector of the formQ = 1

5ka +ζkb + 2
5kc, which is able to nest

a significant portion of these sheets (whereζ represents an unknown interplane component).
In contrast to the previous conjectures [5,10], only∼50% of the quasi-one-dimensional states
become gapped by the order parameter. The incomplete nesting of the quasi-one-dimensional
Fermi-surface sheets within the LTLF phase leads to a somewhat more complicated Fermi
surface, but with all of the features necessary to explain both the experimentally observed
angle-dependent magnetoresistance oscillation data within the LTLF phase, as well as the
Shubnikov–de Haas and de Haas–van Alphen data. In particular, theν-frequency is found to
originate from quantum interference effects, as anticipated by Houseet al[11], and corresponds
to an area ink-space equal to the area of the reconstructed Brillouin zone.
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To verify the existence of further small Fermi-surface pockets anticipated by our model,
we also report further measurements of the magnetoresistance within the LTLF phase. A low
frequency of≈113 T (close to the model prediction) is found to exist experimentally.

2. Fitting procedure

The process by which bandstructure parameters are adjusted in order to produce a Fermi
surface that best represents the experimental data is a well-established technique for modelling
the electronic structures of conventional three-dimensional metals [24]. This has typically
involved a Korringa–Kohn–Rostoker (KKR) parametrization of the bandstructure whereby
information on the Fermi-surface topology, obtained by angle-dependent de Haas–van Alphen
measurements, is fed back into the calculation. Owing to the reduced dimensionality of quasi-
two-dimensional organic metals, angle-dependent quantum oscillation measurements alone
are not sufficient to extract all of the necessary information on the topology of their Fermi
surfaces within the planes. Detailed information on the in-plane topology can only be obtained
from angle-dependent magnetoresistance oscillation measurements. Since most of the gross
geometrical properties of the Fermi surfaces of charge-transfer salts are predicted reliably
by the tight-binding method (in which the bandstructure is described in terms of eight or so
scalar transfer integrals) this provides a rather convenient means of parametrizing the Fermi
surface. The fitting procedure is therefore considerably simpler than the Korringa–Kohn–
Rostoker method; each of the ‘transfer integrals’ti in the tight-binding model can be adjusted
in turn until a Fermi surface is obtained that is in satisfactory agreement with experiment. We
emphasize at this point that the parametersti thus obtained are merely a convenient way of
describing the Fermi surface; they shouldnot be interpreted as the true transfer integrals that
would be obtained in a rigorous calculation of the overlaps of the molecularπ -orbitals. In
a narrow-band metallic system such as a BEDT-TTF salt, the electrons will interact, almost
certainly renormalizing the shape of the single-particle Fermi surface; the fittedti will include
the effect of such interactions, whereas true transfer integrals would not.

Each time any one of theti is adjusted, the Fermi surface needs to be recalculated. Adopting
the methods used for previous calculations of the bandstructures ofα-phase salts [2], the
four energy bandsεj (k), that describe the transfer of electrons among the four inequivalent
BEDT-TTF molecules, can be obtained by solving the secular equation

〈ψ1 · · ·ψ4|H(t1, . . . , t8)|ψ∗1 · · ·ψ∗4 〉 = 〈ψ1 · · ·ψ4|ε(t1, . . . , t8)|ψ∗1 · · ·ψ∗4 〉. (1)

Here, the Hamiltonian is written in the formH(t1, . . . , t8) in order to express the fact that
it is dependent on theti which, in this case, are adjustable parameters. The solutionsεj are
therefore also unique to each set of parameters.

One way of assessing the quality of fit of the calculated Fermi surface to the experimental
data is by comparing the shapes of various parts of the calculated Fermi surface with the results
of fits to angle-dependent magnetoresistance oscillation data. For each Fermi-surface sheetj ,
this can be inferred from the size of the residual area1Aj which, in this context, is the net area
in k-space enclosed between the perimeters of the calculated and experimental Fermi-surface
components. Since the ultimate goal of this work is to obtain a fit to the entire Fermi surface,
including all bands, the fitting procedure requires the sum of all residual areas

∑
j 1Aj to be

minimized.
It is convenient to represent the occupancy of filled electronic states for each bandj by

the Theta function

ρj (k) = 2(εj (k)− εF ) (2)
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so that the total area of filled electron states ink-space for each band is given by the integral

Aj =
∫ ∫

ρj dkx dky cosβ∗

over the Brillouin zone. Here,εF is the Fermi energy andβ∗ ∼ 90◦ is the angle between the
reciprocal-lattice vectorska andkc. The residual areas for each band can therefore be obtained
via the integral

1Aj =
∫ ∫

|ρj − ρmeas| dkx dky (3)

whereρmeasrepresents the experimentally determined Fermi-surface component corresponding
to that band.

Since the two lower-energy bands are completely filled, the residual areas for each of these
bands is zero; hence1A1 = 1A2 = 0. The third and fourth bands, however, intersect with the
Fermi energy, the third giving rise to theα-pocket and the fourth giving rise to the quasi-one-
dimensional sheets. Angle-dependent magnetoresistance oscillation experiments have shown
that the shape of theα-pocket is indistinguishable from an ellipse with its major axis inclined
at an angleθ with respect toka. Using the elliptical approximation, the occupancy of filled
electronic states is

ρmeas,α ≈ 2
(
Aα − πk

′2
x

r
− πrk′2z

)
(4)

whereAα is the area of theα-pocket, determined most accurately by means of quantum
oscillation experiments [1, 3–5, 10, 11, 18], andr is its ellipticity determined from angle-
dependent magnetoresistance oscillation measurements [13–16]. To take account of the fact
that theα-pockets are located at the corners of the Brillouin zone [2] and are inclined at an
angleθ [14,16], thek-vectors in equation (4) are modified by the translations

k′x = (kx ± ka/2) cosθ + (kz ± kc/2) sinθ

k′z = (kz ± kc/2) cosθ − (kx ± ka/2) sinθ.

1A3 can then be found by substituting equation (4) into (3).
Since there have been no direct measurements of the topology of the quasi-one-

dimensional sheets within the high-magnetic-field phase (or the high-temperature phase), it is
not possible to make a precise estimate of the residual area1A4 corresponding to the fourth
band. Fortunately, because the topology of the Fermi surface is limited by certain constraints
(which we list below), it is at least possible to make a first-order linear approximation relating
1A4 to the size of the gap ink-space1kx gap separating the quasi-one-dimensional sheets
from theα-pocket. The first constraint is that the sum of the maximum extent of theα-pocket
in the kx-direction (which we shall labelkx max,α) and the gap1kx gap defines at least one
point in k-space on the quasi-one-dimensional (Q1D) Fermi surface. Thekx-component of
this position vector is thereforekx max,Q1D = kx max,α +1kx gap. The second constraint is that
charge neutrality requires the area enclosed by theα-pocket and the area between the quasi-
one-dimensional sheets to be equal. As a result of this latter constraint, any changeδkx max,Q1D

in kx max,Q1D must also involve a changeδ(1kwarp) in the amplitude of the warping1kwarp of
the quasi-one-dimensional sheets. At this point it is useful to consider a hypothetical model
for the warping of the quasi-one-dimensional sheets of the form

kx ' k0 + (1kwarp) sin(2πkz/kc + φ)

whereφ is an arbitrary phase parameter [25]. If the maximum extent of the warping|1kwarp|
occurs in the vicinity of the gap, then according to this model,δ(1kwarp)/δkx max,Q1D = −1.
Sincekx max,α is effectively fixed, thenδ(1kwarp)/δ(1kx gap) = −1.
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In the case of the quasi-one-dimensional sheets, the residual area is the area displaced by
changing their degree of warping; hence

∂(1A4)/∂(1kwarp) ' 2

π
kc

and therefore

∂(1A4)/∂(1kx gap) ' − 2

π
kc.

If 1kx gap refers to the calculated gap and1kx meas refers to that obtained from magnetic
breakdown measurements, then we can make the approximation

1A4 ∼ 2

π
kc|1kx gap−1kx meas|. (5)

This can only be considered to be a rather approximate expression, since we ignore the higher
harmonic components of the warping of the quasi-one-dimensional sheets [25]. Nevertheless,
we succeed in combining all of the experimental factors (i.e. the area of theα-pocket, its
ellipticity, its angle of inclination and the magnetic breakdown gap) into a single parameter
(
∑

j 1Aj ), which greatly simplifies the fitting procedure.
A rapid convergence of the fit is ensured by first making small adjustments±δti to each

of the ti in order to estimate the first and second partial derivatives∂(
∑

j 1Aj )/∂ti and
∂2(
∑

j 1Aj )/∂t
2
i . In this way, an estimate of the change1ti in ti required to minimize∑

j 1Aj (with respect to oneti only) can be obtained by using the relation

1ti ∼ −
(
∂

(∑
j

1Aj

)/
∂ti

)/(
∂2

(∑
j

1Aj

)/
∂t2i

)
.

An iteration is then complete once this procedure has been repeated for alli.
The original transfer integrals of Moriet al [2] provide a convenient point of departure

from which to begin the fit; these are listed in table 1. This constrains our modified Fermi
surface to be topologically similar to that of Moriet al; i.e. with theα-pockets located at the
corners of the Brillouin zone and the quasi-one-dimensional sheets running through the centre
of the Brillouin zone. Each of the eightti can be considered to represent a degree of freedom
of the fit. Two of these are effectively lost by pinning theα-pocket to the V point of the
Brillouin zone; i.e. a minimum of twoti are required to define a closed pocket at this location.
Another degree of freedom is lost by fixing the position of the quasi-one-dimensional electron
states along the0Z axis; i.e. only oneti is required to define a one-dimensional sheet if we
do not consider its warping. One may further argue that charge neutrality imposes yet another

Table 1. A list of the ti for α-(BEDT-TTF)2KHg(SCN)4 fitted to the Fermi surface in this work,
and the corresponding transfer integrals of Moriet al and Camposet al.

Numeric label Mori’s label tMori (meV) tCampos(meV) tfit (meV)

t1 c1 −19 7 −19.0

t2 c2 68 58 64.5

t3 c3 −11 29 −42.7

t4 c4 −14 — −39.2

t5 p1 −100 54 −81.0

t6 p2 −97 58 −76.6

t7 p3 133 97 109.9

t8 p4 132 89 143.6
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constraint, leaving effectively four degrees of freedom remaining for the fit. However, since
the ti are interdependent, one cannot associate any particularti with one particular feature of
the Fermi surface.

3. Fitting results for α-(BEDT-TTF) 2KHg(SCN)4

The accuracy of the fit is entirely dependent on the precision to which the Fermi surface
of α-(BEDT-TTF)2KHg(SCN)4 has been measured by experiment. The area of theα-
pocket is perhaps the most reliable information, with all of the more recent publications
being unanimous in quotingFα ∼ 670 T [1, 3–5, 10, 11, 18]. Values reported for its
ellipticity r and inclinationθ determined from angle-dependent magnetoresistance oscillation
measurements are nevertheless more widely spread. Quasi-two-dimensional angle-dependent
magnetoresistance oscillations providing information of the shape of theα-pocket have been
performed at temperatures aboveTp (at low magnetic fields) and at fields aboveBk (at low
temperatures) yielding similar results [13–16], and thereby indicating that the Fermi-surface
topologies are essentially the same in the two regimes [16]. Similar results are also found
under pressure at low magnetic fields and low temperatures [26]. Reported values ofr range
from 1.47 to 2.3, although the latter value was obtained from angle-dependent magneto-
resistance oscillation measurements made at only a few azimuthal angles [15], in which it
appears that the sample may have been misorientated [27]. More recent experiments by
the same group support this assertion [16]. For the purpose of our fit, we shall take the
average of the remaining values, givingr̄ ∼ 1.7± 0.1. With the exception of the experiments
involving the misorientated sample [15,27] (in whichθ is quoted as−58◦), all angle-dependent
magnetoresistance oscillation measurements [13,14,16,26] indicate thatθ is∼15± 3◦.

Meanwhile, the estimate of the gap1kx measin k-space between theα-pocket and quasi-
one-dimensional sheets has only been obtained from a single measurement of the de Haas–van
Alphen effect in strong magnetic fields, which yielded1kx meas∼ 4% ofka [18]. Since this
gap is obtained from the logarithm of the ratio of the amplitudes of the de Haas–van Alphen
β- andα-frequencies, the error in its determination is small.

The initial residual area
∑

j 1Aj obtained by using the transfer integrals of Moriet al [2]
prior to performing the fit occupies∼12% of the Brillouin zone. After only four iterations, this
is reduced to∼0.5%. The fittedti are listed together with the transfer integrals [28] of Mori
et al [2] and Camposet al [29] in table 1 [30]. The corresponding bandstructure and Fermi
surface generated by the fit are shown in figures 1 and 2 respectively. It is immediately apparent
from figure 2 that the fittedti are able to reproduce the experimental inclination of theα-pocket
with respect toka. This means that theα-pocket in figure 2 is considerably more inclined
with respect toka than the predictions of previous bandstructure calculations [2, 20–23].
Furthermore, the gap between the sheets is smaller than in theab initio calculations [2,20–23];
rather than having the form exactly of an ellipse, the reduction of the gap causes theα-pocket
to develop into the shape of a ‘rugby ball’. According to Moriet al [2] a reduced gap can
potentially come about as a result of a reduction in the difference between thec1-type andc2-
type transfer integrals. This is clearly not the case in the present calculations, as it is apparent
in table 1 that these are relatively unaffected by the fit. This is due to the fact that the gap
between the sheets no longer occurs at the Brillouin-zone boundary in our model. Meanwhile
the increased inclination of theα-pocket can be attributed primarily to the large difference
between the values of thep2-type andp4-type ti . This difference is also responsible for the
more strongly warped quasi-one-dimensional sheets [31].

On comparing the bandstructure calculation of figure 1 with that of Moriet al [2],
it is apparent that while the overall electronic dispersion, consisting of four bands, has
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Figure 1. The bandstructure
of α-(BEDT-TTF)2(SCN)4 after
fitting the Fermi surface to
that determined experimentally
by means of quantum oscillations
and angle-dependent magneto-
resistance oscillation studies. The
appropriate transfer integrals are
listed in table 1. The various
positions on the Brillouin zone
can be inferred from figure 2. The
bands are numbered as discussed
in the text.

Figure 2. The Fermi surface corresponding to the bandstructure depicted in figure 1, in the
extended-zone representation. The translational nesting vectorQ is also depicted, as explained in
the text.

approximately the same width, the individual bands have become slightly narrower and more
widely separated. This is particularly true for the second-to-lowest band. A similar effect was
noted in recent calculations of the bandstructure ofκ-(BEDT-TTF)2Cu(NCS)2 as a result of
incorporating the effects of the Coulomb repulsionU into the model [32]. While we have
clearly not includedU in the present calculation, the actual experimental Fermi surface is
potentially modified by Coulomb effects; it is likely that the fitting of theti has attempted to
take account of these modifications [28].

Finally, we remark that the fittedt3 andt4 differ by less than 10% (table 1). In this context,
note that some workers have suggested that the corresponding transfer integrals (i.e. the input
parameters to a single-electron bandstructure calculation) should be identical on symmetry
grounds [21].
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4. Fermi-surface nesting

One immediate result of the pronounced warping of the quasi-one-dimensional sheets in figure 2
is that it is no longer possible for these sheets to nest perfectly, as was assumed in previous
models of the reconstructed Fermi surface ofα-(BEDT-TTF)2MHg(SCN)4 [5,10]. The more
complicated form of the quasi-one-dimensional sheets in figure 2 also implies that there is only
a limited range ofQ-vectors that can effectively nest a portion of these sheets (this contrasts
with the Fermi-surface topology of Moriet al [2] in which thekc-component of theQ-vector
can assume almost any value); for example, there can only be one commensurate nesting vector,
which is of the formQ = 1

5ka + ζkb + 2
5kc, whereζ is an unknown interplane component.

Any incommensurate nesting vectors must also be very close to this value, i.e. they will have
to be of the formQ = ( 1

5 + δa)ka + ζkb + ( 2
5 + δc)kc. In fact, detailed calculations [36] have

been carried out for completely general nesting vectors, and it has been found that the energy
of the system is minimized only whenQ = 1

5ka + ζkb + 2
5kc.

These nesting vectors depart somewhat from those suggested in previous works. Kovalev
et al [14] proposed thatQ = ζ

8ka + 3
8(η − 1

2)kb + 3
8kc for the M= K salt while Kartsovnik

et al [5] proposed thatQ = ζ

6ka + ( η3 − 1
6)kb + 1

3kc for the very similar M= Tl salt. These
vectors were estimated from an analysis of the dependence of the periodicity of the quasi-one-
dimensional angle-dependent magnetoresistance oscillations on the azimuthal angle within the
LTLF phase. It would be a surprising fact if such notably different nesting vectors could exist
in two salts with nearly the same Fermi-surface topology. More recent investigations of the
quasi-one-dimensional angle-dependent magnetoresistance oscillations have shown that these
nesting vectors may not have been as accurately determined as was originally thought. For
example, while Kovalevet al [14] originally claimed that these quasi-one-dimensional sheets
are inclined at an angle ofϕ ∼ 19◦ with respect tokc, this value differs considerably from
more recentϕ-estimates which range as high as 30◦ [12,13,15–17].

Rather than corresponding to a sample-dependent nesting vector, it is more likely that
this range of values originates from a spread in the uncertainty of the sample alignment. If
we take the average of all these values we find that the mean angle is aboutϕ̄ ∼ 24.3± 2◦.
In the following section we will show that our proposed nesting vector gives rise to a quasi-
one-dimensional sheet within the LTLF phase, in an analogous manner to the original model
of Kartsovnik et al [5]. According to theQ-vector determined in this work, the angle of
inclination of the quasi-one-dimensional sheets is given by tanϕ = Qc/Qa, soϕ ∼ 26.6◦.
This value is only approximately 2◦ larger than the angle obtained by averaging all of the
experimental results and is well within the overall spread of values.

Like the previous nesting vectors that have been proposed, the vector componentsQa

andQc obtained here are significantly less than the reciprocal-lattice vectors, resulting in a
rather long periodicity for the spin or charge modulation. This situation is somewhat different
to that for the simpleQ-vectors dealt with in standard spin-density-wave or charge-density-
wave theories [33–35]. Furthermore, the spin-density-wave or charge-density-wave order
nests only∼50% of the quasi-one-dimensional states and therefore results in only a small
change in the density of states at the chemical potential (Fermi energy). We can estimate the
amount by which the electronic contribution to the density of states falls by considering the
effective masses associated with the various parts of the Fermi surface. Quantum oscillation
experiments have shown that the effective mass of theβ-frequency is∼3.5me [18], where
me is the free-electron mass. This large magnetic breakdown orbit encircles all of the states
in k-space; its effective mass is therefore directly proportional to the total density of states
of this salt. The effective masses of theα-pocketmα and the quasi-one-dimensional (Q1D)
sheetsmQ1D obey the sum relationmα +mQ1D = mβ , and sincemα ∼ 2me,mQ1D ∼ 1.5me.
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Thus, if∼50% of the quasi-one-dimensional states become ‘gapped’ upon nesting (as will
become clear in the following section), this leads to the removal of approximately 20% of the
total electronic density of states through the establishment of the spin-density wave or charge-
density wave. Because only∼20% of the states at the Fermi surface can contribute to the spin
or charge condensate within the LTLF phase, this may cause the spin or charge modulation to
be rather weak, making it difficult to observe by diffraction techniques.

5. The reconstructed Fermi surface

The structure of the Fermi surface within the LTLF phase does not necessarily depend on
whether this phase is a spin-density wave or a charge-density wave, but depends only on the
Q-vector and the magnitude of the order parameter. On applying the BCS-like expression
210 = 3.52kBTp, we obtain an order parameter of∼1.2 meV. However, since the effective
massm∗ determined from experiment differs slightly from that obtained from the bandstructure
calculation,mb, the order parameter that we use to calculate the reconstructed Fermi surface
needs to be renormalized. Our bandstructure calculation predicts that the mass of theβ-orbit
in α-(BEDT-TTF)2KHg(SCN)4 is∼2.3me, while experimentally it has been determined to be
3.5me [11]. The effective order parameter1eff that we use in the calculation should therefore
be∼1.5×10 which is∼2 meV.

The reconstructed bandstructure is most easily computed in the case of a commensurate
nesting vector. ChoosingQ = 1

5ka + ζkb + 2
5kc, the calculation of the reconstructed Fermi

surface involves shifting the entire unreconstructed bandstructure by this vector fivefold,
followed by the introduction of1eff as a hybridization potential. For simplicity, we can
assume1eff to be isotropic and independent of energy. Theoretical models of spin-density-
wave or charge-density-wave systems have typically involved a single bandε(k) shifted by a
commensurate (or near commensurate) vector of the formQ = k/2 [33–35], which reduces
to the effective hybridization of only two bands. Since theα-phase salts have four bands prior
to nesting and the nesting vector is more complicated, this leads in the case of the M= K and
Tl salts to the simultaneous hybridization of twenty bands. The modification of each of the
bandsε′j ′ by the order parameter can be obtained from the expression

ε′j ′ = εj ′ +
∑
j

(√[
εj − εj ′

2

]2

+12
eff −

∣∣∣∣εj − εj ′2

∣∣∣∣
)

(6)

which is exact in the case of two bands. This of course assumes a mean-field order parameter
1eff which has the same value at all band crossings.

Figures 3 and 4 show the reconstructed bandstructure and Fermi surface respectively
that result from this calculation. Note that this Fermi-surface model for the LTLF phase is
considerably different from both that of Kartsovniket al [5] and that of Ujiet al [10]. Because
theα-pockets (which are still recognizable in figure 5) are more elongated, they do not overlap.
However, they do intersect with the residual pocket that remains as a result of the imperfect
nesting of the quasi-one-dimensional sheets. This imperfect nesting results in an additional
elongated hole pocket situated at the V′ point of the reconstructed Brillouin zone, with an
initial area equivalent to a Landau quantum oscillation frequency of∼180 T. This pocket is
then truncated by intersection with theα-pocket, to leave an area corresponding to a frequency
≈125± 20 T. The large error results from the fact that the topology of this pocket, which we
shall refer to as theγ -pocket, is very sensitive to uncertainties in the fitted unreconstructed
Fermi surface.

The intersection of theα- andγ -pockets (which are both of the hole type) also gives
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Figure 3. The reconstructed
bandstructure calculated as de-
scribed in the text. The positions
within the reconstructed Brillouin
zone are depicted in figure 4.

Figure 4. The reconstructed Fermi surface
corresponding to the bandstructure shown
in figure 3.

rise to the new set of quasi-one-dimensional sheets. These sheets lie along the0′Z′ axis of
the reconstructed Brillouin zone which is rotated by an angleϕ ≈ 26.6◦ with respect to the
original 0Z axis as a result of the nesting vector. This angle is consistent with the results
of angle-dependent magnetoresistance oscillation experiments within the LTLF phases of the
M = K salt and the very similar M= Tl salt [5,12–17]. The extra area residing between the
α-pockets gives rise to an additional electron pocket situated at the X′ point of the reconstructed
Brillouin zone, which is predicted to have an area of∼39± 20 T.

The area of the reconstructed Brillouin zone is exactly five times smaller than that of the
original Brillouin zone. Taking the value of theβ-frequency observed by Houseet al [11],
thought to correspond to the unreconstructed Brillouin-zone area, the reconstructed Brillouin
zone is then found to correspond to a frequency of 854 T. This area agrees almost exactly with
theν-frequencyFν (≈856 T) observed in Shubnikov–de Haas measurements [5, 11], which
was suggested by Houseet al [11] to result from quantum interference effects. A quantum
interference frequency corresponding to an area ink-space equivalent to that of the Brillouin
zone was recently found in two hexaboride compounds [37, 38] and was further proposed to
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Figure 5. The quantum interferenceν-
trajectories which enclose an area ink-
space equivalent to that of the reconstructed
Brillouin zone. Theα-pocket, which can be
obtained through magnetic breakdown within
the LTLF phase, is also shown.

occur in pure elemental Sn [37]. One conjecture that emerges as a result of studies of this
effect in LaB6 [37] is that Brillouin-zone quantum interference frequencies should occur in
most two- or three-dimensional magnetic breakdown networks. One of the possible pairs of
quantum interference trajectories enclosing an area equivalent to that of the new Brillouin
zone is shown in figure 5. The letter A indicates the point at which the wave divides. The
upper branch begins by following the path of part of one of theα-orbits, requiring magnetic
breakdown across gaps opened up as a result of1eff . The lower branch begins by following the
quasi-one-dimensional sheets of the LTLF phase. This further requires magnetic breakdown to
take place at the0 point of the Brillouin zone, which is possible because of the small separation
between the quasi-one-dimensional sheets at this point. The waves finally interfere at point B,
with the phase enclosed between the two trajectories corresponding to a frequency of 854 T.

While we can explain the existence of the quantum interferenceν-frequency, we cannot
explain why it has an unusual temperature dependence [11], although we remark that, because
its area is equivalent to that of the Brillouin zone, its associated effective mass iszero [37].
There now exist examples of quantum interference frequencies with unusual temperature
dependences in several materials; examples include quantum interference in LaB6 [37], and the
‘rapid oscillations’ in TMTSF2ClO4 which have been attributed to quantum interference [39].

A quantum interference trajectory corresponding to theλ-frequency (≈183 T) of
α-(BEDT-TTF)2KHg(SCN)4 can also be produced within our Fermi-surface model. In figure 5,
this requires quasiparticles on the upper branch to make an additional excursion around
one of theα-pockets. The quantum interference frequency is then given by the difference
Fλ = Fν−Fα = 184 T. Studies of the magnetoresistance ofκ-(BEDT-TTF)2Cu(NCS)2 using
both experimental data and numerical models [41] have shown that quantum interference
frequencies often appear more strongly than do conventional Shubnikov–de Haas oscillations.
This may explain why some of the other possible combination frequencies are relatively weak
within the LTLF phase ofα-(BEDT-TTF)2KHg(SCN)4 compared to the quantum interference
orbits mentioned above.

The final prominent frequency observed within the LTLF phase (we shall examine some
weak oscillations below) is theµ-frequency of≈775 T [11]. The only way that a frequency of
this order can occur in our model of the reconstructed Fermi surface is from the combination of
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theα-frequency and that of the holeγ -pocket at V′. Thus, ifFµ = Fα +Fγ , then according to
our model,Fµ ∼ 795±20 T. This is slightly larger than the frequency observed experimentally,
although the difference could be accounted for by the uncertainty of the fit. In our model,Fµ
is a conventional Landau quantum oscillation frequency, which explains why it is observable
in both the Shubnikov–de Haas and de Haas–van Alphen effects [10,11,40]. The observation
of theµ-frequency implies thatFγ should be observable at sufficiently low magnetic fields.
According to our model,Fγ ∼ 125± 20 T, but if we take the experimental value ofFµ, this
implies thatFγ ∼ 105 T.

Figure 6(a) shows the results of additional low-magnetic-field, low-temperature exp-
eriments that were performed in order to study the possible existence of other quantum oscill-
atory features within the LTLF phase. A single crystal ofα-(BEDT-TTF)2KHg(SCN)4 was
measured within a dilution refrigerator using low-frequency, low-current lock-in techniques;
the current was applied in the interplane direction. The Shubnikov–de Haas oscillations in
figure 6(a) have been normalized by the background resistance. Fourier transformation of this
signal reveals the usual frequencies within the LTLF phase (as shown in figure 6(b)), but also
indicates the possibility of another frequency at∼100 T. Only three periods of this frequency
can exist within the interval of 1/B space in figure 6(b), so part of the information is lost by
the application of a Hanning window; i.e. this effectively reduces the number of oscillations
of this frequency to∼1.5.

Figure 6. (a) Shubnikov–
de Haas data for α-(BEDT-
TTF)2KHg(SCN)4 taken at
T ∼ 100 mK, normalized by the
background magnetoresistance. (b)
Fourier transformation of the data
shown in (a), with a power spectrum
obtained by the MEM shown in the
inset.

The maximum-entropy method provides an alternative means for analysing low-frequency
oscillations. If we perform such a transform on the oscillations in figure 6(a) we obtain (at low
frequencies) the maximum-entropy-method power spectral density in the inset to figure 6(b).
The maximum-entropy method has the advantage of not requiring the application of a window
function prior to performing the calculation, which therefore preserves more of the information.
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The lowest of the frequencies in the inset to figure 6(b) is∼113 T, and is therefore very close to
theFγ -frequency anticipated by our model. We can have confidence in the maximum-entropy
method since it also produces sharper peaks forFλ ∼ 183 T as well as its harmonic 2Fλ.

A comparison between the different M= K, Tl and Rb salts by Ujiet al revealed that
the frequencies which are common to two or more of these salts have very similar values [40].
We should therefore expect all of these salts to have Fermi-surface topologies that are nearly
the same within the LTLF state. Since, according to Ujiet al, there exist two low frequencies
Fη ∼ 38 T andFκ ∼ 69 T in the M= Tl salt, we should also expect similar frequencies in
the M= K salt. It is possible that these frequencies may only have appeared in the M= Tl
crystals because of their higher quality. On the other hand, both of these frequencies could
conceivably be artefacts of the low-frequency noise [10]. However, the lower of these two
frequencies is remarkably close to that expected for the electron pocket at the X′ point of
the Brillouin zone. The higher frequency also could conceivably correspond to an additional
Fκ = Fν − Fµ quantum interference frequency. More detailed studies of the LTLF phase are
clearly required to address these questions.

Finally, we remark that there is no component of the Fermi surface in figure 4 with
which the smaller pockets of Ujiet al [10, 40] (referred to asδ andε) can be immediately
identified [42]. However, the calculations of the reconstructed Fermi surface in this work
reveal that when the order parameter is reduced by∼20%, further small pockets emerge
close to the0 point of the reconstructed Brillouin zone owing to the imperfect nesting of the
quasi-one-dimensional sheets. This is a plausible explanation for the presence of theδ- and
ε-frequencies in the work of Ujiet al [10,40].

A summary of the predicted and observed quantum oscillation frequencies is given
in table 2.

Table 2. A list of the various frequencies observed inα-(BEDT-TTF)2MHg(SCN)4 salts within
the LTLF phase, using the nomenclature described in the paper. Only the values of the frequencies
measured,Fmeas, in the M = K salt are shown, except for those frequencies that are observed
only in the M= Tl salt. The third column shows the equivalent frequenciesFmodel to be expected
from the reconstructed Fermi-surface model. The range of salts (i.e. M= K,Tl or Rb) in which
the frequencies (or similar frequencies) are observed are listed in the fourth column. The fifth
column addresses the origin of the oscillation, with LQ, MB and QI referring to Landau quantum
oscillations, magnetic breakdown and quantum interference respectively; for magnetic breakdown
or quantum interference combination frequencies, the means by which the combination is obtained
is listed where necessary. The sixth column addresses the type of carrier enclosed by the pocket
with e referring to electrons and h referring to holes. The final column refers to the location of the
centre of the orbit within the reconstructed or unreconstructed Brillouin zone. Note that neither a
carrier ‘type’ nor an orbit location can be assigned to the quantum interference frequencies.

Flabel Fmeas(T) Fmodel (T) Seen in: Origin Type Location

δ, ε 11 — M= K, Tl — — —
η 38 39 M= Tl LQ e X′

κ 69 59 M= Tl QI (ν − µ) — —
γ 113 125 M= K LQ h V′

λ 183 184 M= K, Tl QI (ν − α) — —
α 670 670 M= K, Tl, Rb MB h V, V′

µ 775 795 M= K, Tl, Rb MB (α + γ ) h V′

ν 856 854 M= K, Tl QI (reconstructed Brillouin zone) — —
β 4270 4270 M= K, Tl, Rb MB h 0
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6. Summary and conclusions

In this paper we describe a method for determining the topology of the Fermi surface of quasi-
two-dimensional organic molecular metals by adjusting the parametersti of the tight-binding
bandstructure so that it agrees with experimental data. We re-emphasize that the parametersti
thus obtained are merely a convenient way of describing the Fermi surface; they shouldnotbe
interpreted as the true transfer integrals that would be obtained in a rigorous calculation of the
overlaps of the molecularπ -orbitals. In a narrow-band metallic system such as a BEDT-TTF
salt, the electrons will interact, almost certainly renormalizing the shape of the single-particle
Fermi surface; the fittedti will include the effect of such interactions, whereas true transfer
integrals would not.

On the application of this method to the charge-transfer saltα-(BEDT-TTF)2KHg(SCN)4,
we obtain a Fermi-surface topology which is significantly different from the previous
bandstructure calculation findings. The quasi-one-dimensional component of the Fermi surface
is found to be more strongly warped, which implies that the nesting of these sheets is imperfect,
giving rise to a different Fermi-surface topology within the LTLF phase. The model for
the reconstructed Fermi surface in this work can explain the existence of canted quasi-one-
dimensional sheets within the LTLF phase and the existence of quantum interference effects.
One of the quantum interference frequencies (referred to as theν-frequency) corresponds to
an area ink-space equivalent to the area of the reconstructed Brillouin zone. Other observed
Shubnikov–de Haas and de Haas–van Alphen frequencies are also in broad agreement with
the Fermi-surface topology proposed in this work.
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